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Introduction 
Hydrological models are transformations of inputs 𝑥𝜏 (e.g. rainfall) at discrete time τ to outputs 𝑄𝜏 
(e.g. river discharge) by means of a model: 

𝑄𝜏 = 𝐺(𝒙𝜏) (1) 

where 𝒙𝜏 is a vector containing a number of consecutive input variables, or even a matrix consisting 
of several input variables (such as rainfall, evapotranspiration, perhaps river discharge in an 
upstream basin, etc.). The transformation function is generally a complicated one, also involving 
additional state variables (e.g. soil moisture).  

A model is never identical to reality and thus the true value of the output 𝑞𝜏 will be different from the 
model prediction 𝑄𝜏.  

In a blueprint, Montanari and Koutsoyiannis (2012) provided a framework to upgrade a 
deterministic model into stochastic, which provides the probability distribution of the output given 
the inputs and the deterministic model output, considering the uncertainty in model parameters and 
in input variables. This work has been discussed (Nearing, 2014; Koutsoyiannis and Montanari, 
2014a) and advanced in other studies (Sikorska et al., 2015; Papacharalampous et al. 2019a,b)  

Here we have the same aim but we study a different setting, whose main characteristic is the 
upgrade of the deterministic model into stochastic based on the data only.  
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Background 
The hypothesis set is that the information contained in the true outputs 𝑞𝜏 and the concurrent 
predictions by the deterministic model 𝑄𝜏 is sufficient to support this upgrade. 

Simplicity is a principal objective and therefore we do not involve multiple simulations, Bayesian 
methods (e.g. MCMC) etc.; rather we aim at a computational framework that can run even in a 
worksheet software. 

We do not consider parameter uncertainty in the deterministic model on the basis that another 
parameter set is in fact another model and the approach here is intentionally single-model rather 
than multi-model. Given that the final product is a stochastic model, there is no need to consider 
separately the parameter uncertainty. Rather, the stochastic model per se provides a basis to 
compare different deterministic models in terms of their overall efficiencies.   

We do not subdivide uncertainty in different components. The framework should automatically 
incorporate all types, including the uncertainty in input data, for which no particular provision is 
necessary. 

The framework assumes stationarity (cf. Montanari and Koutsoyiannis, 2014b; Koutsoyiannis and 
Montanari, 2015). If different subperiods are characterized by different model parameters or 
different input uncertainty, then we can split the entire simulated period in subperiods in which 
stationarity can be safely assumed.  
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Premises 
For advancing a deterministic model into stochastic, we regard all related quantities as stochastic (random) 
variables and their sequences as stochastic processes. For notational clarity we underline stochastic 
variables, stochastic processes and stochastic functions. We use non-underlined symbols for regular 
variables and deterministic functions, as well as for realizations of stochastic variables and of stochastic 
processes, where the latter realizations are also known as time series. 

We assume that the inputs 𝑥𝜏 , at discrete times τ, have a stationary probability density function 𝑓𝑥(𝑥) and 

distribution function 𝐹𝑥(𝑥). The output 𝑞𝜏 depends on the inputs 𝑥𝜏  and is given though some stochastic 

function (S-model) as: 

𝑞𝜏 = 𝑔(𝒙𝜏) (2) 

The stochastic process 𝑞𝜏 is assumed to correspond to the real process, while the outcome of the 

deterministic model (D-model) of equation (1) is an estimate thereof. By writing the latter equation in 
stochastic terms, retaining however the function 𝐺 (≠ 𝑔) as a deterministic function, we obtain the 

estimator 𝑄𝜏  of the output 𝑞𝜏 as: 

𝑄𝜏 ≔ 𝐺(𝒙𝜏) (3) 

To advance from the D-model, in its form (3), to the S-model in (2) we just need to specify the conditional 
distribution: 

𝐹𝑞|𝑄(𝑞|𝑄) = 𝑃 {𝑞 ≤ 𝑞|𝑄 = 𝑄} (4) 

with q and Q assumed concurrent and referring to discrete time τ. In other words, here conditioning is 
meant in scalar setting. An extension where Q is a vector containing the current and earlier predictions by 
the D-model is possible but more laborious, thus not complying with our simplicity target. 
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Basic requirements 
It is relatively easy to infer from data the marginal distribution and density functions of the S-
variable 𝑞 and D-predicted variable 𝑄. Therefore we may assume that 𝑓𝑞(𝑞) and 𝑓𝑄(𝑄) are known. 

Then the conditional density sought should obey: 

∫ 𝑓𝑞|𝑄(𝑞|𝑄)d𝑞

∞

−∞

= 1, ∫ 𝑓𝑞|𝑄(𝑞|𝑄)𝑓𝑄(𝑄)d𝑄

∞

−∞

= 𝑓𝑞(𝑞)  (5) 

The former equation is trivial. The latter one, if we set 𝑧 = 𝐹𝑄(𝑄), with 𝑄 = 𝐹𝑄
−1(𝑧), so that 

𝑓𝑄(𝑄)d𝑄 = d𝑧, can be written as:  

∫𝑓𝑞|𝑄(𝑞|𝐹𝑄
−1(𝑧))d𝑧 = 𝑓𝑞(𝑞)

1

0

 (6) 

Integrating we find: 

∫∫𝑓𝑞|𝑄(𝑎|𝐹𝑄
−1(𝑧))d𝑧𝑑a

1

0

𝑞

0

= 𝐹𝑞(𝑞) (7) 

and changing the order of the integrals we finally find: 

∫𝐹𝑞|𝑄(𝑞|𝐹𝑄
−1(𝑧))d𝑧

1

0

= 𝐹𝑞(𝑞) (8) 
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Approximation using data 
If we have time series of concurrent Q and q, each of size n, and if 𝑄(𝑖:𝑛) is the ith smallest value in the 

time series of Q and 𝑞(𝑗:𝑛) is the jth smallest value in the time series of q, then we can use the 

approximations 𝐹𝑄(𝑄𝑖) ≈ 𝑖/𝑛 and 𝐹𝑞(𝑞𝑗) ≈ 𝑗/𝑛, and thus approximate 𝐹𝑞(𝑞) in equation (8) as: 

1

𝑛
∑𝐹𝑞|𝑄(𝑞|𝑄(𝑖:𝑛)) ≈ 𝐹𝑞(𝑞)

𝑛

𝑖=1

 (9) 

and for 𝑞 = 𝑞𝑗  

1

𝑛
∑𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛))

𝑛

𝑖=1

≈
𝑗

𝑛
 (10) 

Hence: 

𝐵𝑗 ≔∑𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛))

𝑛

𝑖=1

= 𝑗 (11) 

We can thus attempt to determine 𝐹𝑞|𝑄  by minimizing: 

𝐴 ≔∑(𝐵𝑗 − 𝑗)
2

𝑛

𝑗=1

=∑(∑𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛))

𝑛

𝑖=1

− 𝑗)

2𝑛

𝑗=1

 (12) 

This may admit infinite solutions in case that the minimum value can be zero. Strategies to approach 
possible solutions will be discussed in section “From ideal to real cases”. 
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Specific cases of D-model: good models 
The perfect D-model is when 𝑞 = 𝑄 . In this case: 

𝐹𝑞|𝑄(𝑞|𝑄) = 𝑃 {𝑞 ≤ 𝑞|𝑄 = 𝑄} = 𝑃 {𝑄 ≤ 𝑞|𝑄 = 𝑄} = {
0 𝑄 > 𝑞
1 𝑄 ≤ 𝑞

 (13) 

The inequality 𝑄 ≤ 𝑞  can be written in terms of 𝑧 = 𝐹𝑄(𝑄) as 𝑧 ≤ 𝐹𝑄(𝑞) = 𝐹𝑞(𝑞) and thus equation (8) holds true:  

∫𝐹𝑞|𝑄(𝑞|𝐹𝑄
−1(𝑧))d𝑧

1

0

= ∫ 1d𝑧

𝐹𝑞(𝑞)

0

= 𝐹𝑄(𝑞) = 𝐹𝑞(𝑞) (14) 

The data-based approximation in (11) also holds true: 

𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛)) = {
0 𝑗 ≤ 𝑖
1 𝑗 > 𝑖

, 𝐵𝑗 = 𝑗, 𝐴 = 0  (15) 

A certain D-model is one with bias but no uncertainty. In this case there holds a monotonically increasing deterministic 

relationship between 𝑞 and 𝑄 without uncertainty, i.e., 𝑞 = ℎ (𝑄) or equivalently 𝑄 = ℎ−1(𝑞). Hence: 

𝐹𝑞|𝑄(𝑞|𝑄) = 𝑃 {𝑞 ≤ 𝑞|𝑄 = 𝑄} = {
0 𝑄 > ℎ−1(𝑞)

1 𝑄 ≤ ℎ−1(𝑞)
 (16) 

The inequality 𝑄 ≤ ℎ−1(𝑞) can be written in terms of 𝑧 = 𝐹𝑄(𝑄) as 𝑧 ≤ 𝐹𝑄(ℎ
−1(𝑞))= 𝐹𝑞(𝑞) and equation (8) holds true: 

∫𝐹𝑞|𝑄(𝑞|𝐹𝑄
−1(𝑧))d𝑧

1

0

= ∫ 1d𝑧

𝐹𝑞(𝑞)

0

= 𝐹𝑞(𝑞) (17) 

The data-based approximation in (11) holds true again: 

𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛)) = {
0 𝑗 ≤ 𝑖
1 𝑗 > 𝑖

, 𝐵𝑗 = 𝑗, 𝐴 = 0 (18) 
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Specific cases D-model: bad models 
A terrible D-model resembles the certain D-model in the sense that it is not affected by uncertainty but in this case the 

monotonic deterministic relationship between 𝑞 and 𝑄, 𝑞 = ℎ (𝑄) or equivalently 𝑄 = ℎ−1(𝑞), is decreasing. Obviously this 

is not a good model and this case is not usually met in hydrological practice, except in cases of using climate model outputs, 
which sometimes have negative correlation with reality (Tyralis and Koutsoyiannis, 2017). In this case: 

𝐹𝑞|𝑄(𝑞|𝑄) = 𝑃 {𝑞 ≤ 𝑞|𝑄 = 𝑄} = {
0 𝑄 < ℎ−1(𝑞)

1 𝑄 ≥ ℎ−1(𝑞)
 (19) 

The inequality 𝑄 ≥ ℎ−1(𝑞) can be written in terms of 𝑧 = 𝐹𝑄(𝑄) as 𝑧 ≤ 𝐹𝑄(ℎ
−1(𝑞))= 𝐹𝑞(𝑞) and equation (8) holds true: 

∫𝐹𝑞|𝑄(𝑞|𝐹𝑄
−1(𝑧))d𝑧

1

0

= ∫ 1d𝑧

𝐹𝑞(𝑞)

0

= 𝐹𝑞(𝑞) (20) 

The data-based approximation in (11) holds true again: 

𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛)) = {
0 𝑗 ≤ 𝑖
1 𝑗 > 𝑖

, 𝐵𝑗 = 𝑗, 𝐴 = 0 (21) 

The irrelevant D-model is one in which 𝑞 is independent from 𝑄 and thus 

𝐹𝑞|𝑄(𝑞|𝑄) = 𝐹𝑞(𝑞) (22) 

Equation (8) holds true again: 

∫𝐹𝑞|𝑄(𝑞|𝐹𝑄
−1(𝑧))d𝑧

1

0

= 𝐹𝑞(𝑞)∫1d𝑧

1

0

= 𝐹𝑞(𝑞) (23) 

The data-based approximation in (11) holds true again: 

𝐵 = ∑𝐹𝑞|𝑄(𝑞(𝑗:𝑛)|𝑄(𝑖:𝑛))

𝑛

𝑖=1

=∑𝐹𝑞(𝑞(𝑗:𝑛))

𝑛

𝑖=1

= 𝑛𝐹𝑞(𝑞(𝑗:𝑛)) = 𝑛
𝑗

𝑛
= 𝑗, 𝐴 = 0 (24) 
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From ideal to real cases  
In the ideal case of a perfect model there is nothing to do—the prediction equals the true value.  

The certain and terrible models shift the predictions Q to the actual values q and the prediction interval has zero 
width—again the prediction is deterministic. Our only desideratum in this case is to determine the deterministic 
function 𝑞 = ℎ(𝑄). 

In the irrelevant model the predictions Q are essentially discarded and the prediction interval becomes constant, 
fully determined by the marginal distribution 𝐹𝑞(𝑞). 

In real world cases we may assume that the D-model is neither irrelevant, nor certain, let alone perfect, and 
hopefully nor terrible. In these cases, as already discussed, our aim is to derive the conditional distribution 
𝐹𝑞|𝑄(𝑞|𝑄), which incorporates both a shift of the prediction Q toward the real value q (bias correction) and the 
probabilistic assessment of the stochastic error (uncertainty assessment). Note that in the certain model, the 
conditional distribution sought becomes 𝐹𝑞|𝑄(𝑞|𝑄) = 𝑈(ℎ(𝑄)), where 𝑈(𝑥) is the unit step function (𝑈(𝑥) = 0 for 

𝑥 < 0 and 𝑈(𝑥) = 1 for 𝑥 ≥ 0). 

One strategy to tackle the problem is to use a simple parametric relationship for the function 𝐹𝑞|𝑄(𝑞|𝑄) and 

determine its parameters by minimizing the quantity 𝐴 in equation (12). An example would be to assume 𝐹𝑞|𝑄(𝑞|𝑄) 

to be a Pareto-Burr-Feller (PBF) distribution (see Appendix 2) with constant tail indices 𝜉 and 𝜁 and scale 
parameter varying with 𝑄; the manner to handle this is provided in section “Simple simulation”.  

A similar approach would be to assume a copula 𝐶 (𝐹𝑞(𝑞),𝐹𝑄(𝑄)) and determine 𝐹𝑞|𝑄(𝑞|𝑄) as:  

𝐹𝑞|𝑄(𝑞|𝑄) =
𝐹𝑞𝑄(𝑞,𝑄)

𝑓𝑄(𝑄)
, 𝐹𝑞𝑄(𝑞,𝑄) = 𝐶 (𝐹𝑞(𝑞),𝐹𝑄(𝑄)) (25) 

If C is a copula then equation (12) should hold automatically.  
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A simple fully data-based alternative 
While a parametric approach like the above is attractive from many aspects, here we try an even simpler 
approach, i.e. we try to determine 𝐹𝑞|𝑄(𝑞|𝑄) from the data alone without assuming a specific expression for 

the distribution. As the variables of interest in hydrology are of continuous type, we may expect that each 
value 𝑄𝜏  in the available time series appears only once. Thus we cannot form a sample for a particular value 
of Q. However, as a simple approximation of 𝐹𝑞|𝑄(𝑞|𝑄), we can form a sample of Q-neighbours based on:  

𝐹𝑞|𝑄(𝑞|𝑄) = 𝑃 {𝑞 ≤ 𝑞|𝑄 = 𝑄} ≈ 𝑃 {𝑞 ≤ 𝑞|𝑄 − Δ𝑄1 ≤ 𝑄 ≤ 𝑄 + Δ𝑄2} =

≈  𝑃 {𝑞 ≤ 𝑞|𝐹𝑄(𝑄)− Δ𝐹1 ≤ 𝐹𝑄 (𝑄) ≤ 𝐹𝑄(𝑄)+ Δ𝐹2} ≕ 𝐹𝑞|[𝑄](𝑞|𝑄, Δ𝐹1 ,Δ𝐹2) 
(26) 

where the increments Δ𝑄𝑖  and Δ𝐹𝑖 can be chosen based on the requirement that the intervals below and 
above the values 𝑄 or and 𝐹𝑄(𝑄) contain appropriate numbers of data values, 𝑚1 ≔ Δ𝐹1𝑛 and 𝑚2 ≔ Δ𝐹2𝑛, 

respectively. The numbers 𝑚1 and 𝑚2 should not be too large, so that 𝐹𝑄(𝑄)± Δ𝐹1,2 be close to 𝐹𝑄(𝑄), nor 

too small, so that the probability 𝑃 {𝑞 ≤ 𝑞|𝐹𝑄(𝑄)−𝑚1/𝑛 ≤ 𝐹𝑄 (𝑄) ≤ 𝐹𝑄(𝑄)+𝑚2/𝑛} can be estimated 

empirically, from a sample of size 𝑚1 +𝑚2 + 1, as reliably as possible. 

In general, we may choose Δ𝐹1 = Δ𝐹2 = Δ𝐹  and 𝑚1 = 𝑚2 = 𝑚. For example, setting 𝑚1 = 𝑚2 = 𝑚 = 20, i.e. 
𝑚1 +𝑚2 + 1 = 41, the lowest empirical probability we can estimate would be 1 41⁄ ≈ 2.5% and the 
highest one 1− 1 40⁄ ≈ 97.5%. Conversely, for probabilities 2.5% and 97.5% we can empirically estimate 
the corresponding quantiles of q as the minimum and the maximum observed value, respectively, in the 
sample of 𝑚1 +𝑚2 + 1 values. Details on the choice of numbers 𝑚1 and 𝑚2 are given in Appendix 4. 

For more reliable estimates that do not depend on one data point only as above, we could use a larger m 
along with order statistics different from the lowest and the highest ones. The newly introduced concept of 
knowable moments (K-moments, Koutsoyiannis, 2018, 2020) offers an alternative for empirical quantile 
estimates, more general and reliable than order statistics as it combines many data points in each estimate.  
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A summary of the K-moments approach 
The noncentral knowable moment (or noncentral K-moment) of order (p, q) is defined as 
(Koutsoyiannis, 2018):  

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E[(𝐹(𝑥))

𝑝−𝑞

𝑥𝑞] , 𝑝 ≥ 𝑞 (27) 

A most interesting special case is for 𝑞 = 1. The noncentral knowable moment of order (p, 1) is: 

𝐾𝑝
′ ≔ 𝑝E [(𝐹(𝑥))

𝑝−1

𝑥] , 𝑝 ≥ 1 (28) 

A basic property that connects the K-moments with expectations of maxima is: 

𝐾𝑝
′ = E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] (29) 

For expectations of minima another type of K-moments is defined, as described in Appendix 1.  

For a sample of size n, 𝐾𝑝
′  has an unbiased estimator (Koutsoyiannis, 2020): 

𝐾𝑝
′ =∑𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛)

𝑛

𝑖=1

, 𝑏𝑖𝑛𝑝 = {

0, 𝑖 < 𝑝

𝑝

𝑛
 
Γ(𝑛 − 𝑝 + 1)

Γ(𝑛)
 

Γ(𝑖)

Γ(𝑖 − 𝑝 + 1)
, 𝑖 ≥ 𝑝 ≥ 0

 (30) 

where Γ( ) is the gamma function and 𝑥(𝑖:𝑛) is the ith order statistic, defined to be the ith smallest of n 

iid stochastic variables arranged in increasing order of magnitude, i.e.: 𝑥(1:𝑛) ≤ 𝑥(2:𝑛) ≤ ⋯ ≤ 𝑥(𝑛:𝑛). 

The minimum and maximum are, respectively, 

𝑥(1:𝑛) = min(𝑥1,𝑥2, … , 𝑥𝑛) , 𝑥(𝑛) ≔ 𝑥(𝑛:𝑛) = max(𝑥1, 𝑥2, … , 𝑥𝑛)  (31) 

and represent special cases of the order statistics, the lowest and the highest.  



  D. Koutsoyiannis;A. Montanari, Blue Cat  11 

Assigning probabilities to K-moments  

By definition, 𝐾𝑝
′  represents the expected value of the maximum of p copies of 𝑥. Koutsoyiannis 

(2020) has introduced the Λ-coefficient of order p as: 

𝛬𝑝 ≔
1

𝑝 (1− 𝐹(𝐾𝑝
′ ))

 (32) 

𝛬𝑝 happens to vary only slightly with p. Any symmetric distribution will give exactly 𝛬1= 2 because 

𝛫1
′ is the mean, which will equal the median and thus yield 𝐹(𝐾𝑝

′) = 1/2. Thus, a rough 
approximation is the rule of thumb: 

𝛬𝑝 ≈ 2 (33) 

Generally, the exact value 𝛬1 is easy to determine, as it is directly related to the mean: 

𝛬1 =
1

1− 𝐹(𝜇)
 (34) 

The exact value of 𝛬∞ depends only on the tail index ξ of the distribution: 

𝛬∞ = {Γ(1 − 𝜉)
1
𝜉 , 𝜉 ≠ 0

eγ, 𝜉 = 0
 (35) 

where γ = 0.577 is the Euler’s constant.  
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Assigning probabilities to K-moments (2) 

These enable the simple approximation of 𝛬𝑝 and hence of the non-exceedance probability: 

𝛬𝑝 ≈ 𝛬∞ +
𝛬1 −𝛬∞
𝑝

, 𝐹(𝐾𝑝
′) ≈ 1 −

1

𝛬∞𝑝 + (𝛬1 −𝛬∞)
 (36) 

Conversely, for a given non-exceedance probability 𝐹, we can calculate the quantile 𝑥 as the 𝐾𝑝
′  that 

corresponds to:  

𝑝 ≈
1

𝛬∞(1 − 𝐹)
+ 1 −

𝛬1
𝛬∞

 (37) 

The estimate of 𝐾𝑝
′  based on the typical estimator 𝐾𝑝

′ = ∑ 𝑏𝑖𝑛𝑝  𝑥(𝑖:𝑛)
𝑛
𝑖=1  is more reliable than that 

based on a single 𝑥(𝑖:𝑛) because it is derived from many data points (except when 𝑖 = 𝑛, where the 

two approaches are precisely identical). 
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Stochastic assessment of a prediction model (1): marginal 
distributions  
Laio and Tamea (2007) have introduced a diagnostic plot combining probability distributions of 
predictions and true values, which has become later popular in similar studies, having been termed 
predictive quantile-quantile (PQQ) plot—even though in the original paper it has been called simply 
probability plot. Here we refer to it as combined probability-probability (CPP) plot because the 
popular term “quantile” is wrong (the plot represents probabilities rather that quantiles). In 
stochastic language, CPP is a plot of the empirical distribution function 𝐹𝑧(𝑧) of a stochastic variable 
𝑧 against its value 𝑧. The variable is defined as the non-exceedence probability:  

𝑧 ≔ 𝐹𝑄(𝑞) (38) 

Its distribution function is 𝐹𝑧(𝑧) = 𝑃{𝑧 ≤ 𝑧} = 𝑃 {𝐹𝑄 (𝑞) ≤ 𝑧} =  𝑃 {𝑞 ≤ 𝐹𝑄
−1(𝑧)} and hence: 

𝐹𝑧(𝑧) = 𝐹𝑞(𝐹𝑄
−1(𝑧)) (39) 

In other words, 𝐹𝑧 (𝑧) combines the distribution functions of predictions Q and real quantities q. The 
predictions are regarded as good if the plot 𝐹𝑧(𝑧) vs. z is the equality line, i.e., if: 

𝐹𝑧(𝑧) = 𝑧 (40) 

which means that the distribution of z is uniform. In this case 𝑧 = 𝐹𝑞 (𝐹𝑄
−1(𝑧)) or 𝐹𝑞

−1(𝑧)= 𝐹𝑄
−1(𝑧). 

This is possible only if 𝐹𝑄(𝑥) is identical to 𝐹𝑞(𝑥). Therefore the plot in essence tests whether the two 

distributions, estimated from the data, are identical. The procedure is quite similar to plotting 
𝐹𝑄(𝑥) vs. 𝐹𝑞(𝑥). 
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Stochastic assessment of a prediction model (2): 
Rank correlations 
It is noted that the CPP plot, except for assessing the proximity of the two marginal distributions, 
does not give any other indication if the predictions are good. For example if 𝑄 is completely 

independent from 𝑞 (an obviously irrelevant model) but the two distributions are identical, again the 

distribution of z will be uniform.  

Therefore another metric should also be used in addition to CPP plot. A simple one used here is the 
Spearman’s rank correlation coefficient, i.e. the correlation coefficient between the ranks of Q and q. 
If its value is close to 1, the model would be close to certain, regardless of the value of the Pearson 
correlation coefficient of Q and q. 



  D. Koutsoyiannis;A. Montanari, Blue Cat  15 

Simple simulation: Method A  
If we want to generate a simulation series from the S-model for a period for which there exist D-
model predictions, we can apply the following method that is a simplified form of that in Sikorska et 
al. (2015); the latter study utilized nearest neighbours in the D-model outputs to make a stochastic 
prediction.  

The simple Method A used here contains the following steps. 

1. Given a model prediction Q, we locate in the ordered sample 𝑄(𝑖:𝑛), 𝑖 = 1,… , 𝑛, the rank 𝑖 for 

which Q is closest to 𝑄(𝑖:𝑛). 

2. We retrieve the sample sizes 𝑚1 and 𝑚2 that have been used in the calibration for the 
particular 𝑄(𝑖:𝑛) . 

3. We generate a random number j in the interval [𝑖 − 𝑚1, 𝑖 + 𝑚2] from the uniform distribution. 
4. We locate the time k (𝑘 = 1, … , 𝑛) which corresponds to the value 𝑄(𝑗:𝑛) and take as simulated 

value of the true discharge the value 𝑞𝑘.  

The problem of Method A is that it does not extrapolate the output beyond the maximum and 
minimum values contained in the observations 𝑞𝜏 of the calibration period.  
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Simple simulation: Method B 
The problem of method A can be tackled with an alternative parametric Method B, whose steps are 
the following.  

1. We assume that the conditional distribution function 𝐹𝑞|𝑄(𝑞,𝑄) is PBF (see Appendix 2) with 

scale parameter depending on 𝑄 but with tail indices constant. Then the tail indices could be 
estimated by bracketing the conditional distribution function as described in Appendix 3.  

2. Given a model prediction Q, we locate in the ordered sample 𝑄(𝑖:𝑛), 𝑖 = 1,… , 𝑛, the rank 𝑖 for 

which Q is closest to 𝑄(𝑖:𝑛) and we retrieve from the calibration phase the expectation E[𝑞|𝑄 =

𝑄(𝑖:𝑛)]. 

3. We determine the scale parameter 𝜆 by equating the theoretical mean with the estimated 
E[𝑞|𝑄 = 𝑄(𝑖:𝑛)]. Specifically, we use equation (66) with 𝑝 = 1 and 𝜇1

′ = E[𝑞|𝑄 = 𝑄(𝑖:𝑛)] and 

solve it for λ. 
4. We generate 𝑞 from the PBF distribution. 

Both Methods A and B ensure preservation of the true distribution function of 𝑞 (i.e., a perfect CPP 
plot) regardless of how good or bad the D-model is.  
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A toy model for checking the framework 
We use a toy model to check the framework, which is intentionally constructed as simple as possible. 
The D-model is intentionally diverging from reality, with large bias, which alternates between 
positive and negative values (for different ranges of D-predictions) and substantial 
heteroscedasticity. These negative features help to check whether the framework is able to recover 
reality from a D-model that is biased, with inconsistent tail behaviour and heteroscedasticity.  

The input process 𝑥𝜏 at discrete time τ is assumed independent in time, stationary, and nonnegative 
(𝑥𝜏 ≥ 0) with exponential distribution: 

𝑓𝑥(𝑥) = e
−𝑥  (41) 

The output 𝑞𝜏 is assumed to be a deterministic function of two consecutive 𝑥𝜏: 

𝑞𝜏 = 𝑔(𝑥𝜏, 𝑥𝜏−1) ≔ 𝑐(e𝑎 𝑥𝜏+𝑏𝑥𝜏−1 − 1) (42) 

where 𝑎 and b are independent parameters satisfying 0 ≤ 𝑎, 𝑏 ≤ 1 and c is an additional parameter 

determined from 𝑎 and b on the basis that E [𝑞𝜏] = E[𝑥𝜏] = 1 (see below). It may be noticed that 

𝑥𝜏 ≥ 0,𝑞𝜏 ≥ 0, ℎ(0,0) = 0 and that the output has a heavy tailed distribution while the input has not. 

To make the output a stochastic function 𝑔 of input, we omit the input 𝑥𝜏−1 and write 

𝑞𝜏 = 𝑔(𝑥𝜏) (43) 

We estimate 𝑞𝜏 by the simplest possible D-model: 

𝑄𝜏 = 𝐺(𝑥𝜏) = 𝑥𝜏 (44) 
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Specification of the toy S-model 
To specify the S-model for 𝑞𝜏 we need to determine the conditional distribution 𝐹𝑞𝜏 |𝑄𝜏(𝑞|𝑄), which we 

assume stationary, i.e. 𝐹𝑞𝜏 |𝑄𝜏(𝑞|𝑄) ≡ 𝐹𝑞|𝑄(𝑞|𝑄). We have: 

𝐹𝑞|𝑄(𝑞|𝑄) = 𝐹𝑞𝜏 |𝑄𝜏 (𝑞|𝑄) = 𝑃 {𝑞𝜏 ≤ 𝑞|𝑄𝜏 = 𝑄} = 𝑃 {𝑞𝜏 ≤ 𝑞|𝑥𝜏 = 𝑄} = 𝑃{𝑐(e
𝑎𝑄+𝑏𝑥𝜏−1 − 1) ≤ 𝑞}

= 𝑃 {𝑥𝜏−1 ≤ ln (
𝑞

𝑐
+ 1)

1
𝑏
−
𝑎𝑄

𝑏
} = 𝐹𝑥 (ln (

𝑞

𝑐
+ 1)

1
𝑏
−
𝑎𝑄

𝑏
) = 1− 𝑒

𝑎𝑄
𝑏 (
𝑞

𝑐
+ 1)

−
1
𝑏

 
(45) 

where we notice that the rightmost side is positive when  

𝑞 ≥ 𝑐(e𝑎𝑄 − 1) ≥ 0, 0 ≤ 𝑄 ≤
1

𝑎
ln (
𝑞

𝑐
+ 1) (46) 

while otherwise 𝐹𝑞𝜏 |𝑄𝜏 (𝑞|𝑄) = 0. 

Based on the above two equations, we can find every property of the model, conditional and 
marginal, using the standard algebra of stochastics. The results are listed in the table of next page.  
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Toy S-model equations 
Quantity Related Equations* Ref. 
Parameters† 

0 < 𝑎 < 1, 0 < 𝑏 < 1, 𝑐 =
(1− 𝑎)(1− 𝑏)

𝑎 + 𝑏 − 𝑎 𝑏
 (47) 

Joint density 
𝑓𝑞,𝑄(𝑞,𝑄) =

1

𝑏𝑐
e
(
𝑎
𝑏
−1)𝑄 (

𝑞

𝑐
+ 1)

−
1
𝑏
−1

 
(48) 

Conditional density 
𝑓𝑞|𝑄(𝑞|𝑄) =

1

𝑏𝑐
e
𝑎𝑄
𝑏 (
𝑞

𝑐
+ 1)

−
1
𝑏
−1

 (49) 

Conditional distribution 
𝐹𝑞|𝑄(𝑞|𝑄) = 1− e

𝑎𝑄
𝑏 (
𝑞

𝑐
+ 1)

−
1
𝑏
 (50) 

Conditional quantile 
𝑞 = 𝑐 (e

𝑎𝑄
𝑏 (1− 𝐹𝑞|𝑄(𝑞|𝑄))

−𝑏

− 1) (51) 

Marginal densities 
𝑓𝑄(𝑄) = 𝑒

−𝑄, 𝑓𝑞(𝑞) = 
1

𝑐(𝑎 − 𝑏)
((
𝑞

𝑐
+ 1)

−
1
𝑎
−1

− (
𝑞

𝑐
+ 1)

−
1
𝑏
−1

) (52) 

Marginal distributions 

𝐹𝑄(𝑄) = 1− 𝑒
−𝑄, 𝐹𝑞(𝑞) =  

1

𝑎 − 𝑏
(𝑎(1− (

𝑞

𝑐
+ 1)

−
1
𝑎
)− 𝑏(1− (

𝑞

𝑐
+ 1)

−
1
𝑏
)) (53) 

Marginal means 
E [𝑄] = 1,E [𝑞] =

𝑐(𝑎 + 𝑏 − 𝑎 𝑏)

(1− 𝑎)(1− 𝑏)
= 1 (54) 

Conditional mean 
E [𝑞|𝑄] =

𝑐(e𝑎𝑄− 1 + 𝑏) 

1 − 𝑏
 (55) 

Tail indices 𝜁 = 1; 𝜉 = max(𝑎,𝑏) for marginal distribution; 𝜉 = 𝑏 for conditional distribution  (56) 
* The equations are valid for 𝑎 ≠ 𝑏 . The limit for 𝑎 = 𝑏, as well as those for 𝑎,𝑏 = 0, 1 can be easily found but are omitted for brevity. 
The equations are valid for q and Q satisfying (46); out of the limits of (46), the probability densities are zero.  
† The upper limits for a and b assure a finite mean; for finite variance they should be replaced by 1/2. The value of c (> 0) ensures mass 

conservation, i.e., E [𝑄] = E [𝑞] (see equation (54)). 
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Toy model results: almost certain D-model 
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Independent parameters: 𝑎 = 0.75, 𝑏 = 0.02 

Choices: 𝑀 = 10,𝐹L = 1− 𝐹H = 0.1  

Resulting parameters: 𝑐 = 0.325, 𝜉 = 0.02, 𝜁 = 1  

𝛬1 = 2.75,𝛬∞ = 1.81, 𝑝H = 5.01 

𝛬1 = 1.57,𝛬∞ = 1,𝑝L = 9.43 

Rank correlations: �̂�𝑞𝑄 = 0.998, �̂�𝑞E[𝑞|𝑄] = 0.9999  
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Toy model results: good D-model 
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Independent parameters: 𝑎 = 0.75, 𝑏 = 𝑎 2⁄ = 0.375 

Choices: 𝑀 = 10,𝑃L = 1 − 𝑃H = 0.1  

Resulting parameters: 𝑐 = 0.185, 𝜉 = 0.375, 𝜁 = 1 

𝛬1 = 3.50,𝛬∞ = 2.62, 𝑝H = 3.48 

𝛬1 = 1.40,𝛬∞ = 1,𝑝L = 9.60 

Rank correlations: �̂�𝑞𝑄 = 0.84, �̂�𝑞E[𝑞|𝑄] = 0.97  
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Toy model results: almost irrelevant D-model 
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Independent parameters: 𝑎 = 0.02, 𝑏 = 0.375 

Choices: 𝛭 = 200, 𝐹L = 1− 𝐹H = 0.1  

Resulting parameters: 𝑐 = 1.58, 𝜉 = 0.375, 𝜁 = 1 

𝛬1 = 3.50,𝛬∞ = 2.62, 𝑝𝐻 = 3.48 

𝛬1 = 1.40,𝛬∞ = 1,𝑝L = 9.60 

Rank correlations: �̂�𝑞𝑄 = 0.09, �̂�𝑞E[𝑞|𝑄] = 0.66  
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Real-world case study: Arno River 
As a real world case, the observations of daily time series of the Arno River at Subbiano were used. 
The catchment area is 752 km2. The observations span the 22-year period 1992-2013. The first 20 
years are used for model calibration and the last two for model validation. The D-model is the 
Hymod model (Boyle, 2000; Montanari, 2005) with 5 parameters. For the calibration period the 
correlation coefficient between the D-model outputs 𝑄 and the true values 𝑞 is 0.87, which means 
that the model is able to explain 0.872 = 75% of the total variance. The Spearman’s rank correlation 
coefficient is also 0.87. These characteristics justify the characterization of the D-model as a good 
one. 

In contrast to the toy-model case, here we do not know the true marginal and conditional 
distribution functions. It is rather easy to infer the marginal distributions (see next page) and we will 
use the method proposed to infer the conditional distribution. In absence of knowledge of the true 
distribution, we assess the appropriateness of the method by testing it for the validation period, 
where in addition to expected values and confidence limits we perform also a simulation using 
Method A, whose results are assessed by the CPP plot.  
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Real-world case study: Marginal distributions 
The plot on the right 
suggests that the PBF 
distribution describes very 
well both the true and D-
predicted discharge. The 
fitting was made by a least 
square method of 
theoretical and empirical 
K-moment-based quantiles, 
using both noncentral K-
moments for quantiles 
larger than the mean and 
tail-based K-moments for 
quantiles smaller than the 
mean. The fitted 
parameters are shown in 
the table. The graph also 
contains quantile estimates 
based on order statistics  
(i.e. the well-known plotting  
positions). 
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Real-world case study: Calibration 
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Choices: 𝑀 = 100, 𝐹L = 1− 𝐹H = 0.1  

Calibrated parameters: 𝜉 = 0.34, 𝜁 = 2.49  

𝛬1 = 2.81,𝛬∞ = 2.52, 𝑝𝐻 = 3.8 

𝛬1 = 1.55,𝛬∞ = 1.34, 𝑝L = 7.0 

Rank correlations: �̂�𝑞𝑄 = 0.87, �̂�𝑞E[𝑞|𝑄] = 0.998  

Note: The graph above depicts 100 
days of the calibration period, 
where the first day is 2011-01-01. 
As shown in all graphs and 
particularly in the inset, the D-
model overpredicts low discharges 
and underpredicts high ones (this 
behaviour is also seen in the graph 
of marginal distributions). 
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Real-world case study: Validation 
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Note: The graph on the right depicts 100 days of the calibration period, where the first day is 
2013-01-01. All required parameters have been determined in the calibration phase. 

Rank correlations: �̂�𝑞𝑄 = 0.87, �̂�𝑞E[𝑞|𝑄] = 0.87 

Pearson correlations: �̂�𝑞𝑄 = 0.85, �̂�𝑞E[𝑞|𝑄] = 0.86 
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Real-world case study: CPP plots 

In addition to D-predictions and S-expectations (E[𝑞|𝑄]), the graphs also show CPP plots for 

simulated time series, produced by Method A. In the calibration period the CPP of the simulated 
series aligns perfectly over the equality line. 

In the validation period there is a slight discrepancy of the CPP of the simulated series. The reason is 
the fact that the CPP of the D-model is worse than that of the calibration period and this has some 
effect on that of the simulated series. 
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Conclusions   
• Using only observational data along with predictions of a deterministic model (D-model), we 

can advance the latter into a stochastic model (S-model), with a simple computational 
framework. 

• The stochastic counterpart of the deterministic model accomplishes two important targets:  

a. It corrects systematic discrepancies (biases) of the D-model, whether these are constant 
or vary with the value of the predictand.  

b. It quantifies the uncertainty of each prediction. 

• The framework provided fully adjusts the marginal distribution function of the predictions to 
that of the true values, thus making a perfect CPP plot. Also it generally improves the Spearman 
and Pearson correlation coefficients when the conditional expectations of the S-model are used 
in place of the D-model outputs. 

• In the hydrological case study performed, it appears that the Pareto-Burr-Feller distribution 
can serve as a good model for the marginal distributions of predictands and predictions, as well 
as for the conditional distribution of predictand given the prediction. 

• The newly introduced concept of knowable moments has proved very helpful in the foundation 
and the application of the framework.  
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Appendix 1: Tail-based K-moments  
By analogy to the noncentral knowable moment (section “A summary of the K-moments approach”, p. 
10), the tail-based noncentral knowable moment of order (p, q) is defined as (Koutsoyiannis, 2020):  

𝐾𝑝𝑞
′
≔ (𝑝 − 𝑞 + 1)E [(1 − 𝐹(𝑥))

𝑝−𝑞

𝑥𝑞] = (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞

𝑥𝑞] , 𝑝 ≥ 𝑞 (57) 

The most interesting special case is again for 𝑞 = 1, i.e.: 

𝐾𝑝
′
≔ 𝑝E [(1 − 𝐹(𝑥))

𝑝−1

𝑥] = 𝑝E [(𝐹(𝑥))
𝑝−1

𝑥] , 𝑝 ≥ 1 (58) 

The tail-based K-moments are connected to expectations of minima by: 

𝐾𝑝
′
= E[𝑥(𝑝)] = E[min(𝑥1,𝑥2, … , 𝑥𝑝)] (59) 

The same equation (30) will give an unbiased estimator 𝐾𝑝
′

 if we revere the order of the sample, i.e. if 
we replace 𝑥(𝑖:𝑛) with 𝑥(𝑛−𝑖+1:𝑛). Likewise, we can introduce the tail-based Λ-coefficient of order p as: 

𝛬𝑝 ≔
1

𝑝 𝐹(𝐾𝑝
′ )

 (60) 

𝛬𝑝 has similar properties with 𝛬𝑝 and in particular varies only slightly with p. For 𝑝 = 1 it is readily 

seen that 

𝛬1 = 1 𝐹(𝜇)⁄ = 𝛬1 (𝛬1 − 1)⁄  (61) 

The limiting value 𝛬∞ depends only on the lower tail index ζ of the distribution: 

𝛬∞ = Γ(1 + 1 𝜁⁄ )
−𝜁  (62) 
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Appendix 1: Tail-based K-moments (2) 

Α simple approximation of 𝛬𝑝 and hence of the non-exceedance probability is: 

𝛬𝑝 ≈ 𝛬∞ +
𝛬1− 𝛬∞
𝑝

, 𝐹(𝐾𝑝
′) ≈

1

𝛬∞𝑝+ (𝛬1− 𝛬∞)
 (63) 

Conversely, for a given non-exceedance probability 𝐹, we can calculate the quantile 𝑥 as the 𝐾𝑝
′

 that 

corresponds to:  

𝑝 ≈
1

𝛬∞𝐹
+ 1−

𝛬1

𝛬∞
 (64) 
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Appendix 2: The Pareto-Burr-Feller (PBF) distribution 
The Pareto-Burr-Feller (PBF) distribution, named thus by Dimitriadis (2017), is also known as Pareto III and IV, 
Burr XII and Feller. Its probability density and distribution functions are, respectively: 

𝑓(𝑥) =
𝜁

𝜆
(
𝑥

𝜆
)
𝜁−1

(1 + 𝜉𝜁(
𝑥

𝜆
)
𝜁

)

−
1
𝜁𝜉
−1

, 𝐹(𝑥) = 1 − (1+ 𝜉𝜁 (
𝑥

𝜆
)
𝜁

)

−
1
𝜉𝜁

, 𝑥, 𝜉 ≥ 0,𝜁, 𝜆 > 0 (65)  

The parameter 𝜆 is a scale parameter with units [𝑥] and the parameters 𝜉, 𝜁 are dimensionless shape parameters, 
known as (higher) tail index and lower tail index, respectively.  

Because of the analytical equations of both the density and distribution functions, it is a very convenient 
computationally. Because of its zero lower bound it is a realistic representation for many physical quantities. 
Because of its two shape parameters it is quite flexible. In fact, it contains as special cases the ditributions: Weibull 
(𝜉 = 0), Pareto (𝜁 = 1) and exponential (𝜉 = 0,𝜁 = 1). It admits analytical relationships for the classical noncentral 
moments (about the origin): 

𝜇𝑝
′ = 𝜆𝑝

𝑝

𝜁(𝜉𝜁)𝑝 𝜁⁄
B(
1

𝜉𝜁
−
𝑝

𝜁
,
𝑝

𝜁
) (66)  

as well as for the tail-based K-moments: 

𝐾𝑝𝑞
′
= 𝜆𝑞

𝑞

𝜁 

1

(𝜁𝜉)𝑞/𝜁
B (
𝑝− 𝑞 + 1

𝜁𝜉
−
𝑞

𝜁
,
𝑞

𝜁
) (67)  

Clearly, the classical moment of order p and the K-moment of orders (𝑝,𝑞) exist if 𝑝 < 1/𝜉 or 𝑞 < 1/𝜉, respectively. 
The characteristic Λ-coefficients are: 

𝛬1 =

(

 1 + (
B(
1
𝜁𝜉
−
1
𝜁
,
1
𝜁
)

𝜁
)

𝜁

)

 

1 𝜁𝜉⁄

, 𝛬1 =
𝛬1

𝛬1 − 1
, 𝛬∞ = 𝛤(1 − 𝜉)

1
𝜉 , 𝛬∞ = Γ (1+

1

𝜁
)
−𝜁

 (68)  
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Appendix 3: Determination of tail indices from K-moment orders 
We assume that we have bracketed a distribution through its quantiles for two non-exceedance 
probabilities 𝐹H > 0.5 and 𝐹L < 0.5. We have empirically (based on data) estimated the K-moment 
orders 𝑝H  and 𝑝L  that correspond to 𝐹H  and 𝐹L. We wish to estimate the tail indices 𝜉 and 𝜁. 
According to (37), (64) and (61) we have: 

𝑝H ≈ 1 −
𝛬1
𝛬∞

+
1

𝛬∞(1 − 𝐹H)
, 𝑝L ≈

1

𝛬∞𝐹L
+ 1 −

𝛬1

𝛬∞
=

1

𝛬∞𝐹L
+ 1−

𝛬1

𝛬∞(𝛬1− 1)
 (69)  

Assuming 𝐹L = 1− 𝐹H = 𝐹 we get 

𝑝H ≈ 1 −
𝛬1
𝛬∞

+
1

𝛬∞𝐹
, 𝑝L ≈

1

𝛬∞𝐹
+ 1−

𝛬1

𝛬∞(𝛬1− 1)
 (70)  

If we assume that the quantity of interest follows the PBF distribution, then 𝛬1,𝛬1, 𝛬∞, 𝛬∞ are given 
by (68). Combining (69), (70) and (68) we can find the two unknown tail indices 𝜉 and 𝜁 from the 
estimated 𝑝H  and 𝑝L . A better strategy is to use several values of 𝐹, estimate the related 𝑝H  and 𝑝L  for 
each F and finally calculate 𝜉  and 𝜁 by minimizing the deviations of theoretical and estimated sets of 
𝑝H  and 𝑝L . 
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Appendix 4: Choice of sub-sample sizes m1 and m2 
The method followed for the choice of sample sizes m1 and m2 is empirical and was tested by 
extended simulations. A more theoretical account is possible but would distract the focus of the 
approach presented which is the ultimate simplicity. Simulation results have shown that setting 
equal numbers 𝑚 gives good results for the body of the distribution but in the upper tail some 
differentiation is required. Furthermore, a decrease of these numbers is necessary for both tails 
down to the minimum possible required for a chosen confidence coefficient. Algorithmically, the 
procedure chosen in order to estimate 𝐹𝑞|𝑄(𝑞|𝑄(𝑖:𝑛)) from 𝐹𝑞|[𝑄](𝑞|𝑄(𝑖:𝑛), Δ𝐹1,Δ𝐹2) is described by the 

following steps. 

1. We choose a number M equal to a small multiple of the inverse of the minimum probability 
that we are seeking for bracketing the probabilistic predictions. For example, if we want to 
bracket the probabilistic predictions between 10% and 90%, the inverse of 10% is 10 and we 
could choose 𝑀 = 10 to 20. 

2. For 𝑀 +1 ≤ 𝑖 ≤ 𝑛 − 2𝑀 we set 𝑚1 = 𝑚2 = 𝑀. 
3. For 𝑖 ≤ 𝑀 we set 𝑚1 = 𝑚2 = 𝑖 − 1. 
4. For 𝑖 ≥ 𝑛 − 2𝑀 + 1 we set 𝑚2 = min{𝑀,𝑛 − 𝑖} and 𝑚1 = ⌊𝑚2/𝑎𝑖⌋ ≥ 𝑚2 , where  
𝑎𝑖 = min{1,1/2 + (𝑛 − 𝑖)/4𝑀}; notice that 1/2 + (𝑛 − 𝑖)/4𝑀 is a linear function of 𝑖 with 
minimum value 𝑎𝑖 = 0.5 for 𝑖 = 𝑛 and maximum 𝑎𝑖 = 1 for 𝑖 = 𝑛 − 2𝑀. 

5. If the resulting curve 𝐹𝑞|𝑄(𝑞|𝑄(𝑖:𝑛)) is too rough, we increase M and repeat the procedure from 

step 1.  
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