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1 INTRODUCTION

These notes give an elementary introduction to linear wave theory.  Linear wave theory is the

core theory of ocean surface waves used in ocean and coastal engineering and naval

architecture.  The treatment is kept at a level that should be accessible to first year

undergraduate students and does not require more than elementary calculus, probability and

statistics.

Part A will cover the linear theory of regular gravity waves on the surface of a fluid, in our

case, the surface of water. For gravity waves, gravitation constitutes the restoration force, that

is the force that keep the waves going. This applies to waves with wavelengths larger than a

few centimeters. For shorter surface waves, capillary forces come into action.

Chapter 2 covers basic wave motion and applies to all kind of waves. In the following chapter

we briefly discuss the equations and boundary conditions which lead to water waves. Plane

waves are treated in detail and simple superposition is also mentioned. We then proceed to

three dimensional waves.

The notes are rather short in the sense that they discuss the equations rather than the

applications.

Most of the material covered may be found in standard textbooks on the topic, see the

references.

2 BASIC WAVE MOTION

The sine (or cosine) function defines what is called a regular wave.  In order to specify a

regular wave we need its amplitude, a, its wavelength, λ, its period, T, and in order to be fully

specified. also its propagation direction and phase at a given location and time. All these

concepts will be introduced below.
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Fig. 1:  The sine wave

Consider the function η  of the two variables position, x, and time, t:

η π π
λ

( , ) sin( )[ W D
7
W [= −2 2

Convince yourself that this function has the following properties:

• For a fixed W0 , η( , )[ W0  is a sine function of x

• For a fixed [0, η( , )[ W0  is a sine function of t

•η η λ η λ( , ) ( , ) ( , ), , , ,[ W [ W [ Q W Q= + = + = −L L1 0 1 ,which shows that the function

repeats itself each time x is increased with λ .  This explains why λ is called

wavelength.

•η η η( , ) ( , ) ( , ), , , ,[ W [ W 7 [ W Q7 Q= + = + = −L L1 0 1  which shows that the function

repeats itself with period T.

•η η( , ) ( , )[ [ W W [ W+ + =0 0  provided [ W 70 / / .λ =

The quantity 2π λ/  is called the wavenumber and is usually denoted by the letter k. Similarly,

2π / 7  is written ω (the Greek letter omega ) and called the angular frequency. The unit for k

is rad/m and for ω rad/s.  Note that  I 7= 1/  is called frequency and  measured in Hertz

(Hz=s-1).

The constant a in front of the sine is called the amplitude of the wave. Note that since
− ≤ ≤1 1sin( )α , η( , )[ W D≤ . That is, η( , )[ W  is never larger than the amplitude.

The basic feature of the wave as defined above is that the whole pattern moves along the x-

axis as the time changes. Consider for simplicity the point x = 0, t = 0, where η is equal to 0.
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If now t starts to increase, the points [ W0 ( ) defined by [ W W 70 ( ) / /λ = will have the property

that η( ( ), )[ W W0 0= for all t. The point  where η is 0, [0, thus moves with velocity λ/T along the

x-axis. The last property stated above shows this in general.

Exercise 2.1:  Consider the functions
η ω1 = −sin( )W N[

and
η ω2 = +sin( )W N[

where both k and ω are larger than 0. Show that the first represents a wave moving to the right

and the second a wave moving to the left!

An additional angle α in the expression η ω α= + +D W N[sin( )  is called a phase term. Show

that a phase term does not affect the wavelength, the period or the propagation direction of the

wave.

Exercise 2.2: Show that if we allow ω and k to be negative and arbitrary phase terms to be

included, all functions
D N[ Wsin( )− ω

D N[ Wsin( / )+ +ω π 4

D W N[ E W N[cos( ) sin( )ω ω− + −

may be written  D W N [’sin( ’ ’ ’)ω α− +  for appropriate choices of D’,ω ’, N ’ and α ’.

The argument of the sine, i.e. ω αW N[− + , is in general called the phase. The phase is often

denoted by the letter φ (Greek phi). Since sin( ) sin( ), , , ,φ π φ+ = = −2 1 0 1Q Q L L  phase

differences of any multiple of 2 �do not matter at all. The phase of the point ( , )[ W1 1  will be

equal to the phase of the point ( , )[ W2 2  if

ω ωW N[ W N[1 1 2 2+ = +
that is,

[ [
W W N 7

2 1

2 1

−
−

= =ω λ

or,

[ [
N
W W2 1 2 1= + −ω

( )

The point [2  on the x-axis which moves with velocity ω / N  will therefore experience the

same phase for all times. Therefore, the velocity F N 7= =ω λ/ /  is called the phase velocity

associated with the wave.
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Let us see what happens if we add two general waves, one travelling to the right and one to

the left. We first recall the trigonometric identity

sin( ) sin( ) sin( ) cos($ %
$ % $ %+ = + −

2
2 2

)

Consider
µ ω ω ω( , ) sin( ) sin( ) sin( ) cos( )[ W W N[ W N[ W N[= − + + = 2

This function is a product of a sine and a cosine; the first with x as argument and the second

with t. Figure 2 shows a plot of the functions for different t’s.

Fig. 2: The standing wave

Note that the function is always 0 for N[ Q Q= = −π , , , ,L L1 0 1 .  In this case we therefore do

not have a travelling wave. However, since we still have a periodic behaviour both in x and t,

it is customary to call this case a standing wave.

Exercise 2.3: The phase velocity for light waves is equal to 300 000 km/s. The periods for

FM-band broadcasting range from (1/88)·10-6 s to (1/108)·10-6 s. What are the wavelengths

of such waves?

Review questions:

1. What is a regular wave?

2. How is the period and the wavelength defined?

3. What is the amplitude of the wave?

4. How do we define the wavenumber and the angular frequency?

5. Why do we call the velocity of the wave the phase velocity, and how can we derive the

 phase velocity?

6. How can we make up a standing wave?
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3. THE EQUATIONS FOR SURFACE WAVES

In this section we shall see how waves may occur on the surface of water in nature or in a

manmade water tank. Unfortunately, it is rather difficult to derive these equations and we

shall therefore not give a complete derivation, but assume some familiarity with fluid

mechanics.

The water motion is governed by the laws of mechanics. These laws are all conservation laws

which tell you that something is conserved. The most familiar one is mass conservation which

says that mass cannot be created or disappear.

We shall first consider waves in a channel with parallel walls and horizontal bottom.  We

shall also assume that the waves travels along the channel and that there are no variation in

the water motion  across the channel.

Fig. 3.1:  Waves along a channel

Since everyone have seen waves on the surface of the water, waves which propagate along the

channel, is is obvious that such waves exist. The problem is then to derive how the

wavelength and the period of the waves may be expressed in terms of, say the water depth, the

acceleration of gravity etc.

The waves on the surface set the rest of the water into motion, and at each point, ( , )[ ] , the

fluid has a velocity
Y L N( , , ) ( , , ) ( , , )[ ] W X [ ] W Z [ ] W= +

where z denotes the vertical coordinate measured upwards from the mean water level. We

have now introduced unit vectors i, pointing along the x-axis and k, pointing along the z-axis

(This k should  not be confused with the wavenumber vector which we are going to use later).
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Note that vectors are written with bold letters. u and w are thus the x- and the z-components of

the velocity.

Water is hard to compress, and for our purpose, we will assume that this is impossible, that is,
we consider water to be incompressible. In an incompressible fluid, the velocity Y = ( , , )X Y Z at

each point will satisfy the equation
∂
∂

+ ∂
∂

+ ∂
∂

=X
[

Y
\

Z
]

0

called the equation of continuity.

In our case the y-component of the velocity, v, is assumed to be zero, that is, we do not

assume any variations across the channel.

If, in addition, the fluid is considered to be irrotational, the velocity may be expressed in

terms of a so-called velocity potential Φ  such that

X
[

Y
\

Z
]

= ∂Φ
∂

= ∂Φ
∂

= ∂Φ
∂

The concepts "irrotationality" and "velocity potential" are treated in courses in Fluid

Mechanics, and also in about every textbook about water waves. If we introduce the velocity

potential in the continuity equation
∂
∂

+ ∂
∂

=X
[

Z
]

0

we obtain

∂
∂

+ ∂
∂

=
2

2

2

2 0
Φ Φ
[ ]

(In the general case, we should also add a term ∂ ∂2 2Φ / \ .)

This equation is a very famous partial differential equation called the Laplace equation.

It turns out that Laplace equation is all we have to know about the water motion away from

the boundaries and the surface.

The bottom of the channel is not permeable to the water, and therefore the vertical water

velocity at the bottom must be zero at all times:
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Z [ ] K W
]
[ ] K W( , , ) ( , , )= − = ∂Φ

∂
= − = 0

This constitutes a relation which must hold at the boundary, and it is therefore called a

boundary condition. For the moment we assume that the channel very long so that we do not

have to bother about conditions  and the far ends.

The conditions at the water surface are harder to obtain. It has been observed that the fluid

near the surface remains near the surface during the wave motion as long as the motion is

smooth. That is, unless the waves break. The first boundary condition at the free surface

consists of stating this property in mathematical terms. Consider  a part of the surface at two

neighbouring times as indicated in Fig. 3.2.

Figure 3.2: Motion of a fluid point on the free surface

The point at ( , ( , ))[ [ W1 1 1η  moves with velocity v to ( , ( , ))[ [ W2 2 2η  during the time interval

∆W W W= −2 1 .  Thus,
η η( , ) ( , ) ( ),

( ).

[ W [ W Z W W

[ [ X W W
2 2 1 1 2 1

2 1 2 1

= + ⋅ −
= + ⋅ −

Let us also expand η( , )[ W1 1  in a Taylor series:

η η η
( , ) ( , ) ( , )( )[ W [ W

[
[ W [ [2 2 1 2 1 2 2 1= + ∂

∂
− +L

If this is introduced in first equation above, we obtain
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η η η
( , ) ( , ) ( , )( ) ( )[ W [ W

[
[ W [ [ Z W W1 2 1 1 1 2 2 1 2 1− ∂

∂
− = ⋅ − +L

Or, if we divide by W W2 1− and let W W2 1→ ,
∂
∂

+ ∂
∂

=η η
W

X
[

Z

This is the mathematical formulation of the physical condition that a fluid particle at the

surface should remain at the surface at all times. It tells you something about the motion of the

surface and is therefore called the kinematic boundary condition.

The other condition to be satisfied at the surface comes from the fact that the pressure S at the

surface must be equal to the atmospheric pressure, which we assume is constant. This

condition may be derived from Bernoulli’s Equation which is also treated in basic courses on

Fluid Mechanics (actually, a version of Benoulli’s Equation is different from the more familiar

form for steady flow). The equation states that for irrotational flow

S
W

X Z J] & W
ρ

+ ∂Φ
∂

+ + + =1

2
2 2( ) ( )

The function & W( )  is not important and may be set to an arbitrary convenient constant. If we

let  & W S( ) /= atm ρ  Bernoulli’s Equation gives for the free surface:

S
W

X Z J
ρ

η+ ∂Φ
∂

+ + + =1

2
02 2( )

This condition, dealing with the force on the surface, is usually called the dynamic boundary

condition.

All together, we have now formulated the mathematical problem which must be solved in

order to find the motion of the surface:

1) Within the fluid, Laplace’s equation must be satisfied

∂
∂

+ ∂
∂

=
2

2

2

2 0
Φ Φ
[ ]

2) At the closed bottom,

Z [ ] K W
]
[ ] K W( , , ) ( , , )= − = ∂Φ

∂
= − = 0

3) The surface is always made up of the same fluid particles:
∂
∂

+ ∂
∂

=η η
W

X
[

Z
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    (has to hold at the surface ] [ W= η( , ) ).

4) The pressure in the fluid at the free surface is equal to the atmospheric pressure:

∂Φ
∂

+ + + =
W

X Z J
1

2
02 2( ) η

    (has to hold at the surface ] [ W= η( , ) ).

The mathematical problem stated in (1) to (4) is very difficult. No complete solution is

known, although we know a lot about special cases.

The next section will treat the case where the magnitude of η( , )[ W  is very small compared to

the variations in the x-direction (For a wave we would say that the amplitude is small

compared to the wavelength).

Review questions:

1. What is the equation of continuity?

2. What is the velocity potential?

3. Which equation must the velocity potential satisfy? What is it called?

4. Which condition must hold at the bottom of the channel?

5. What is a boundary condition?

6. What is the physical content of the kinematic boundary condition?

7. How can we state the kinematic boundary condition in mathematical terms?

8. What is the physical content of the dynamic boundary condition?

4. SMALL AMPLITUDE WAVES

The equations stated in the previous section are much too complicated to be solved in full

generality. We are going to linearize the equation and the boundary condition, and in order to

do so, we shall apply a useful technique called dimensional analysis and scaling. Actually, in

most textbooks, the linearization is treated very briefly.

Assume that the typical length scale for variations in the x-direction is L (for ocean waves, L

could typically be of order 100m which we write as O(100m) ). Assume further that the time

scale is T. (This could be a typical wave period which for ocean waves would be around 8s.)

The amplitude is of the order A, that is, η = 2 $( ) . The two physical parameters in our

problem are

h = the mean water depth
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and

g = the acceleration of gravity.

(It turns out that water density and viscosity, which did not occur in our equations anyway,

are of virtually no significance.)

From the five quantities

L, T, A, h and g

we may form three dimensionless combinations:

π

π

π

1

2

3

2

=

=

=

$
/
/
K
J7

/

(There are other possible combinations but these turn out to be the most convenient).

The small amplitude gravity waves case is when π 1 1<< , that is, when A << L, and gravity is

essential, that is, π 3 1= 2( ) .

The appropriate water velocity scale follows from the vertical motion of the surface. Thus the

scale for |v| is  A/T.  Consider the kinematic condition,

∂
∂

+ ∂
∂

=η η
W

X
[

Z.

The first term is O(A/T), the right hand side is of the same order, whereas the second term is

X
[

2
$
7
$
/

2
$
7

2
$
/

∂
∂

= = ×η
( ) ( ) ( )

Since A/L is supposed to be much smaller than 1, we may neglect the second term and use the

simplified  kinematic condition
∂
∂

=η
W

Z

in the present case.

We then consider the dynamic condition:
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∂Φ
∂

+ + + =
W

X Z J
1

2
02 2( ) η

The magnitude of Φ  is 2 /$ 7( / ) since
∂Φ
∂

=
[

2
$
7

( )

The first term is thus of order

2
$/
7

( )2

The second term is of order

2 $ 7 2
$/
7

2
$
/

( / ) ( ) ( )2
22 7 = ×

Thus, the second is negligible compared to the first. Finally, the last term is

J 2
/$
7

η = ( )2

since we were considering the case where

π 3

2

1= =J7
/

2( )

The last term is thus of the same order as the first term, and we obtain the simplified condition

∂Φ
∂

+ =
W

Jη 0

Unfortunately, the simplified problem is still too difficult for us since the velocities and the

potential should be taken at the free surface,-  which we do not know.  However,

Z [ W Z [ W
Z
]
[ ] W 2( , , ) ( , , ) ( , , ) ( )η η η= + ∂

∂
= ⋅ +0 0 2 .

since
∂
∂

= ⋅ = =Z
]
[ ] W 2

$ 7
/

$ 2
$
7

$
/

( , , ) (
/

) ( )0 η .

In accordance with the approximations we have already done, we may neglect the term
∂ ∂Z ]/ η , and simply use the linearized kinematic condition

∂
∂

=η( , )
( , , )

[ W
W

Z [ W0 .

The η−dependence is thus gone. A similar argument also linearizes the dynamic condition:
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∂Φ
∂

= −( , , )
( , ).

[ W
W

J [ W
0 η

We are now finally ready for attacking the linearized equations:

∂
∂

+ ∂
∂

= − ≤ ≤
2

2

2

2 0
Φ Φ( , , ) ( , , )

,
[ ] W
[

[ ] W
]

K ] η , (1)

  
∂Φ
∂

= − =
]
[ ] K W( , , ) 0, (2)

 
∂
∂

=η
W
[ W Z [ W( , ) ( , , )0 , (3)

          
∂Φ
∂

= −
W
[ W J [ W( , , ) ( , ).0 η (4)

We are primarily looking for solutions that are regular waves so let us first see whether (1)

may have such solutions. For a given z, we thus assume that Φ  has the form

Φ( , , ) ( ) sin( )[ ] W $ ] W N[= − +ω φ 0

where k, ω and φ 0 are unknowns and A is an amplitude which we assume is dependent of z (It

is conceivable that A should depend on z).  If this function is inserted into (1), we easily

obtain

− + − + =N $ ] $ ] W N[2
0 0( ) ’’( ) sin( )ω φ

Shall this be fulfilled for all x and t, we must have that the term in the bracket vanishes

completely. This leads to an second order ordinary linear differential equation for A which has

the general solution

$ ] & N] &( ) cosh( )= +1 2

Equation (2) requires
∂Φ
∂

= − = = − − + =
]
[ ] K W

G$
G]

] K W N[( , , ) ( ) sin( )ω φ 0 0,

which means that $ ] K’( )= − = 0.  But $ ] N& N] &’( ) sinh( )= +1 2  which  vanishes at ] K= −  if

& NK2 = .  Thus, a possible solution which satisfies both (1) and (2) is

Φ( , , ) cosh( ( )) sin( )[ ] W & N ] K W N[= + − +1 0ω φ .

It remains to be seen whether (3) and (4) can be satisfied.  Equation (4) actually gives an

expression for η since
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η

ω ω φ

( , ) ( , , )

cosh( ( )) cos( )

[ W
J W

[ ] W

J
& N ] K W N[

= − ∂
∂

=

= − + − +

1
0

1 0

Φ

But (3) must also hold, that is,

∂
∂

= − +η ω ω φ
W
[ W

J
& NK W N[( , ) cosh( ) sin( )

2

1 0

must be equal to

Z [ ] W
]
[ ] W N& NK W N[( , , ) ( , , ) sinh( ) sin( )= = ∂Φ

∂
= = − +0 0 1 0ω φ

Shall this last condition be true for all x- and t-s, we must have
ω 2

J
NK N NKcosh( ) sinh( )=

or
ω 2 = JN KNtanh( )

This is an equation which says that ω and k can not be chosen at will.  For a given N ≠ 0, only

the two frequencies, ω and -ω which satisfies the equation are allowed. The equation is called

a dispersion relation.  The dispersion relation tells us how the frequency and the wavenumber

are connected.

If we now let  φ π0 2= − /  and set
ω
J
& NK D1 cosh( ) =

we recover the familiar running regular wave for η:

η ω( , ) sin( )[ W D W N[= − .

For the potential Φ we obtain:

Φ( , , ) cosh( ( )) sin( / )

cosh( )
cosh( ( )) cos( )

cosh( ( ))

cosh( )
cos( )

[ ] W & N ] K W N[

DJ
NK

N ] K W N[

DJ N ] K
NK

W N[

= + − −

= −�! 
"
$# + − −

= + −

1 2

1

ω π

ω
ω

ω
ω

1 6

The equations for η, Φ  and the dispersion relation represent the core of linear wave theory.
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Review questions A4:

1. Which two physical parameters are of importance for channel waves?

2. What are the three convenient dimensionless combinations which can be formed from

the length, time and amplitude scales and the physical parameters? What are the sizes of

these dimensionless combinations for small amplitude waves?

3. Find the order of magnitude of the following quantities:
η η, , / , , / , ?Z W W X Z∂ ∂ ∂Φ ∂ +Φ and, 2 2

4. Derive the simplified (linearized) kinematic and dynamic boundary conditions for small

amplitude waves.

5. Show that the surface conditions may be simplified further such that w and ∂Φ ∂/ W are

evaluated at z = 0.

6. Recall the basic steps in the derivation of the regular wave solution.

7. What is the dispersion relation?

5 THE DISPERSION RELATION

The dispersion relation says that waves with a given frequency must have a certain
wavelength. For the wave η ω( , ) sin( )[ W D W N[= −  the wavenumber  k and ω must be connected

by the dispersion relation ω 2 = JN KNtanh( ) . Note that for a given k , there are two

possibilities for ω, namely  ω = +( tanh( )) /JN KN 1 2  and ω = −( tanh( )) /JN KN 1 2. This corresponds

to waves going to the right and to the left, respectively. The mathematical function
\ [= tanh( )  is shown in Fig. 5.1.

Fig. 5.1: The hyperbolic tangent, \ [= tanh( ) .
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For small values of the argument

tanh( )
( ( )) ( ( ))

( ( )) ( ( ))
( )[

H H
H H

[ 2 [ [ 2 [
2 [ 2 [

[ 2 [
[ [

[ [= −
+

= + + − − +
+ + +

= +
−

−

1 1

1 1

2 2
2

Moreover,

tanh( )[
H H
H H

[ [

[ [ [= −
+

 →
−

− →∞ 1.

We recall that h is the water depth, and N = 2π λ/  where λ is the wavelength.  Thus,

NK K= 2π λ/ . If kh is small, then h << λ, that is, the water depth is much smaller than the

wavelength. This corresponds to shallow water. Conversely, if kh is large, this corresponds to

deep water. Let us consider the dispersion relation in these particular cases.

Shallow water:

Now NK << 1and tanh( )NK  may be replaced by kh. Thus, ω 2 = ⋅JN NK , or

ω = ±( ) /JK N1 2 .

Deep water:

In this case, we set tanh( )NK = 1 and

ω = ± JN

Note there is a wide range of water depths which are neither shallow nor deep for a given

wavelength. The rules of thumb are:

• Use the deep water expression when  K > λ / 2 .

• Use the shallow water expression when K < λ / 20

Exercise 5.1: When tanh(x) > 0.99, we may replace tanh(x) by 1 for practical calculations.

Find, by means of your calculator, a value [0 such that tanh(x) > 0.99 when [0 < x. Verify that

we may use ω 2 = JN  when K > λ / 2 . Find the maximum relative error in ω if we use the

shallow water expression when K < λ / 20 .

Exercise 5.2: Determine the wavelength of a wave with period 10s when the water depth is

a) 2000m  , b) 1m.  (Answ. (a) 156m, (b) 31.3m)

Exercise 5.3 Show that in deep water, the wavelength, λ, in metres of a wave with period T

seconds is  1.56T2.
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The phase velocity, cp , of a regular wave was defined as

F
N

/
7S = =ω

We recall that this was, e.g. the speed of the top (crest) of the wave as it moves along. From

the dispersion relation we obtain the following expression for the phase velocity

F
J

NKS =
ω

tanh( ).

Let us see what this amount to in deep and shallow water.  In shallow water, we obtain the

somewhat surprising answer that the phase velocity is independent of both ω and k:

F
N

JK N

N
JKS = ≈

⋅
=ω

However, the velocity is now dependent of the depth, h. Waves for which the phase velocity is

constant are called non-dispersive (Light waves in vacuum and regular sound waves in air are

also non-dispersive).

For deep water we obtain

F
N J

J JN

N
J
NS = ≈ = = =ω ω

ω ω2 /
.

In deep water, the speed increases  with increasing wave period and wavelength. The graph

below is copied from the book of K.F. Bowden. Note that as long  h < λ / 10, the waves move

with constant speed.
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Fig. 5.2: The phase velocity of regular water waves (From Bowden, 1983)

Exercise 5.4: Find the phase velocity for the waves in Exercise 5.2. (Answ (a) 15.6m/s, (b)

3.13m/s.)

Exercise 5.5: In 1966 Cartwright, Snodgrass, Munk and others observed ocean swell

generated from storms offshore New Zealand up into Alaska. Estimate how many days the
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waves have been travelling across the Pacific if their period is 25 s. (Answ. §�����GD\V�� ,Q

Chapter 9 we shall learn that one should actually use only half the phase velocity in such

calculations.)

Exercise 5.6: The same team as in Exercise 5.5 observed that the frequency of the swell when

it was observed far from the source (the generating storm) tended to be linearly increasing

with time. Assume that all waves were generated at the same instant of time and show that the

slope of the observed curve "frequency vs time" by a distant observer, gives us a way to

estimate the distance to the storm.

Exercise 5.7: Determine the speed of the tidal wave (period 12.4 h) as it enters a channel 5 m

deep. (Answ. 7 m/s).

Exercise 5.7:  Plane waves (that is, waves with long and parallel crests)
( ( , ) sin( ))η ω[ W D W N[= − are

approaching from the left as seen from above

on the graph. The negative y-axis consists of

a vertical wall and for y > 0, the water depth

is given by the function K \ D\( ) = 2. Sketch

the wave crests for x > 0 and y > 0 as long as

y satisfies D\2 25< λ / .  Hint: Remember that

the phase velocity also is the velocity of the

wave crests!
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If we want to find the wavenumber k corresponding to a certain ω, we are faced with a so-

called transcendental equation. It is in general impossible to turn the dispersion relation

around and express k as a function ω . Of course, for shallow and deep water, the approximate

solutions are fully adequate.  However,  it is very simple to solve it as closely as we want

numerically, i.e. on a computer.  The FORTRAN function below solves k to a relative

accuracy better than 10-6 for all ω.

Fig. 5.3: A FORTRAN function for solving for k as a function of ω and the depth h.
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Review questions:

1) Write down the dispersion relation for small amplitude waves and explain all the

terms.

2) How does the function y = tanh(x) behave for small and large values of the

argument?

3) Derive simplified forms of the dispersion relation for shallow and deep water, 

    respectively.  What is deep and shallow water in this context?

4) What is the general expression for the phase velocity, and what are the

corresponding      expressions for deep and shallow water?

5) Explain why the dispersion relation has two solutions of ω for each wavenumber.

6  FURTHER PROPERTIES OF THE WAVES

Apart from the surface elevation η and the velocity potential, there are several other quantities

of interest. In the present section we shall look more closely into the velocity of the water due

to the waves, the track of the fluid particles and the pressure variations due to the wave

motion on the surface.

6.1 The velocity field

We recall that the water velocity Y( , , )[ ] W  for the one-dimensional waves we are considering

has two components, Y = ( , )X Z , and

X [ ] W
[
[ ] W Z [ ] W

]
[ ] W( , , ) ( , , ) , ( , , ) ( , , )= ∂Φ

∂
= ∂Φ

∂
.

The velocity potential for the regular wave was derived in Chapter 3:

Φ( , , )
cosh( ( ))

cosh( )
cos( )[ ] W

DJ N ] K
NK

W N[= + −
ω

ω .

Let us for simplicity first consider deep water. For large values of kh we may conveniently

write the cosh-factor as follows:

cosh( ( ))

cosh( )

( )N ] K
NK

H H H H
H H

H
H
H

N] NK N] NK

N] N]
N]

] K N

N]

+ = +
+

= +
+

− −

−

− +

−

1

1

2

2

When z is near the surface and K→ ∞, this expression tends to HN] .  Note that z gets

increasingly negative as we move down into the water, which means that the factor HN]  gets

smaller and smaller.
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For deep water we may thus write

Φ( , , ) cos( )[ ] W
DJ
H W N[N]= −

ω
ω ,

from which it follows  that

X [ ] W
DJ
NH W N[ D H W N[N] N]( , , ) sin( ) sin( )= − = −

ω
ω ω ω ,

and

Z [ ] W
DJ
NH W N[ D H W N[N] N]( , , ) cos( ) cos( )= − = −

ω
ω ω ω .

Thus, for a given depth z, both u and w represent running waves with the same amplitude. The

waves differ in phase by π/2, however. The amplitude decreases from ωa at the surface to HN]

times the surface amplitude at the depth z. This decrease is rather fast: for ] = −λ / 2 ,

H H HN] = = ≈
− −

2

2 0 043
π
λ

λ
π( )

.

At a depth equal to half the wavelength, the velocity amplitude is only about 4% of its surface

value!

For an arbitrary depth the relations are easily seen to be

X [ ] W D
N K ]
NK

W N[

Z [ ] W D
N K ]

NK
W N[

( , , )
cosh( ( ))

sinh( )
sin( ),

( , , )
sinh( ( ))

sinh( )
cos( ),

= + −

= + −

ω ω

ω ω

where we have used the dispersion relation for a slight simplification.

By taking the derivative of the velocities with respect to time, we obtain the fluid

accelerations :

∂
∂

= + −

∂
∂

= − + −

X
W
[ ] W D

N K ]
NK

W N[

Z

W
[ ] W D

N K ]

NK
W N[

( , , )
cosh( ( ))

sinh( )
cos( ),

( , , )
sinh( ( ))

sinh( )
sin( ).

ω ω

ω ω

2

2

Figure 6.1 shows the velocity and acceleration vectors compared to surface elevation. Note

that the velocity is directed in the propagation direction of the wave at the wave crest.
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Fig. 6.1:  Surface elevation along with velocity and acceleration vectors (From Shore

Protection Manual, Vol. 1 p. 2-14)

Exercise 6.1: What is the maximum water particle velocity for a wave of length 200 m and an

amplitude equal to 3 m in deep water? (Answ: 1.7 m/s)

6.2 The trajectories of the fluid particles

Consider the fluid near the point ( , )[ ] ]= =0 0 , and let
( , )[ ]S S  describe the position of a nearby fluid particle

at ( , )0 0+ +[ ] ]S S . The motion of the fluid particle is

given by the differential equations

& ( , , ),

& ( , , ).

[ X [ ] ] W

] Z [ ] ] W
S S S

S S S

= +
= +

0

0

By expanding u and w in a Taylor expansion, e.g.

X [ ] ] W X ] W
X
[
[

X
]
]S S S S( , , ) ( , , )0 00+ = + ∂

∂
+ ∂

∂
+L,

we see by using the expressions for u and w that the first term dominates (assuming that [S
and ]S  are of the order of the wave amplitude).  Thus to a first approximation we may set
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& ( , , ) sin( ),

& ( , , ) cos( ).

[ X ] W $ W

] Z ] W % W
S

S

= =
= =

0

0
0

0

ω
ω

Here we have introduced

$ D
N K ]
NK

% D
N K ]

NK

= +

= +

ω

ω

cosh( ( ))

sinh( )
,

sinh( ( ))

sinh( )
.

0

0

If the two equations are integrated with respect to t,

[ $ W

] % W

S

S

= −

=

1

1
ω

ω

ω
ω

cos( ),

sin( ).

Thus,

[

$

]

%
S S
2

2

2

2 1
( / ) ( / )

.
ω ω

+ =

We recall that this is the equation of an ellipsis, and the fluid particles thus move in elliptical

orbits. In particular, for deep water we have

$ % DHN]= = ω

and the fluid particles  move in circles of radius DHN] .

This is an approximate result. If we look more closely into the equations for u and w, we see

that the u velocity on the top of the orbit is slightly larger than the velocity at the bottom of

the orbit. The net result is therefore a slight displacement along the wave direction.

This net motion is called Stokes drift.
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Fig. 6.2: Water particle displacement from the mean location for shallow water and deep

water waves. ( From the Shore Protection Manual Vol. 1 p. -2-17)

Exercise 6.2: Granted that the fluid particles move in circles with constant speed (in deep

water), give a  direct and simple argument that the velocity has to be ωD  for particles at the

surface.

Exercise 6.3: We shall prove later that the sum of two small amplitude waves also is a
solution. I.e. if ( , )η1 1Φ  and ( , )η2 2Φ  are solutions, so are η η1 2+  and Φ Φ1 2+ . Derive the

velocities and the particle trajectories for the standing wave

η ω ω= − + +D W N[ D W N[sin( ) sin( )

6.3 The varying pressure from the waves

In general the pressure in the water is equal to the atmospheric pressure + the hydrostatic

pressure (due to the weight of the water above) and a  dynamic part due to the wave motion.

If we return to our form of the Bernoulli Equation, we can recall that
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S
W

X Y J]
S

ρ ρ
+ ∂Φ

∂
+ + + =1

2
2 2( ) .atm

If the wave amplitude is small, we may also here, like we did when we derived the linearized
equations, neglect the term ( ) /X Y2 2 2+  and we therefore obtain the following simple

expression:

S [ ] W
W
[ ] W J] S( , , ) ( , , ) .= − ∂Φ

∂
− +ρ ρ atm

The time varying part is usually called the dynamic pressure and is for the regular small

amplitude wave equal to

S [ ] W
W
[ ] W DJ

N ] K
NK

W N[( , , ) ( , , )
cosh( ( ))

cosh( )
sin( ).= − ∂Φ

∂
= + −ρ ρ ω

Exercise 6.4:  What are the pressure variations at the bottom of the sea (h = 100m) for a wave

with amplitude 1m  if the wavelength is 10m, 100m and 1000m? Express the answer in

fractions of the atmospheric pressure. Show that a simplified relation is valid as K / λ → 0.

6.4 Summary

In this section we have considered a regular wave which we have expressed as

η ω( , ) sin( )[ W D W N[= − .

The wavenumber k is equal to 2π λ/  where λ is the wavelength and the angular frequency,

ω is equal to  2π / 7  where T is the period.  The dispersion relation connects the wavelength

and the period
ω 2 = JN NKtanh( ).

If the water depth h is larger than about half the wavelength, the water is deep (as the waves

are considered) and we may use the simplified relation ω 2 = JN .  If we period and the

wavelength, we obtain

λ
π

= J
7

2
2 ,

that is,
λ[ ] .P 7= 156 2 ,

where T is measured in seconds. Thus, a 10s wave in deep water has a wavelength of 156m.

On the contrary if K < λ / 25, the water is shallow as far as the waves are concerned. Then,
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ω = JK N ,

and we obtain

λ[ ] . ,P K 7= ⋅ ⋅313

where h is measured in meters and T in seconds. In shallow water the wavelength is thus

proportional to the wave period.

In deep water the fluid particles move in circles with constant speed. At the surface, the radius

of the circle is equal to the amplitude of the wave. Moreover, the water particle makes one

complete turn per wave period. Hence the particle speed at the surface is 2πD 7/ .  The radius

of the circle diminishes as HN]  as we move downward. When ] = λ / 2 , the radius is only 4%

of its surface value, and when ] = λ  only 0.18%! What are the corresponding velocities?

In very shallow water, the fluid moves almost horizontally with an amplitude

D
N ] K

NK
D
NK

D
NK

D
K

Scosh( ( ))

sinh( ) sinh( )

+
≈ ≈ = ⋅ λ

π2
.

The table on the next page summarizes the Linear Wave Theory. Its is similar to a table in the

SHORE PROTECTION MANUAL. Compare both tables and convince yourself that the results

are similar. Note that the SHORE PROTECTION MANUAL  uses  + D /= =2 , ,λ and that

both tables use d instead of h for water depth.
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/LQHDU�7KHRU\�RI�5HJXODU�:DYHV��5HYLHZ

Wave property SHALLOW WATER

(d /  <  1 / 20)λ

INTERMEDIATE WATER

(1 / 20 <  d /  <  1 / 2)λ

DEEP WATER

(d /  >  1 / 2)λ

Velocity potential

 (X = ∇φ )
φ

ω
ω=

ag k(z + d)

kd
( t - kx)

cosh

cosh
cos φ

ω
ω=

ag k(z + d)

kd
( t - kx)

cosh

cosh
cos φ ω

ω
= −

ag
e t kx

kz
cos( )

Dispersion relation � ��  �J N Gω 2  =  gk  kdω tanh � �  �JNω

Wave length - wave

period relation
λ =  T gd λ

π

π

λ
 =  

g

2
T

2 d
2 tanh λ

π
 =  

g

2
T   (  1.56 T )2 2≈

Wave profile η ω =  a ( t - kx)sin η ω =  a ( t - kx)sin η ω =  a ( t - kx)sin

Dynamic pressure dp  =  ga ( t - kx)ρ ωsin dp = ga
k(z + d)

kd
( t - kx)ρ ω

cosh

cosh
sin p ga e t kxd

kz= −ρ ωsin( )

Horizontal

particle velocity
u =  

a

kd
 ( t - kx)

ω
ωsin u =  a

k(z + d)

kd
( t - kx)ω ω

cosh

sinh
sin u ae t kxkz= −ω ωsin( )

Vertical

particle velocity
w =  a 

z + d

d
( t - kx)ω ωcos w =  a

k(z + d)

kd
( t - kx)ω ω

sinh

sinh
cos w ae t kx

kz= −ω ωcos( )

Horizontal

particle acceleration
& cosu =  

a

kd
( t - kx)

2ω
ω &

cosh

sinh
cosu = a

k(z + d)

kd
( t - kx)2ω ω & cos( )u a e t kx

kz= −ω ω2

Vertical

particle acceleration
& sinw =  - a

z + d

d
( t - kx)2ω ω &

sinh

sinh
sinw = - a

k(z + d)

kd
( t - kx)2ω ω & sin( )w a e t kx

kz= − −ω ω2

Group velocity c c
g

= F F
NG

NG
J

= +
1

2
1

2

2
(

sinh
) c c

g
=

1

2

ω π π λ= � � 7� �N�  �� �

T  = wave period

λ  = wave length

a = wave amplitude

g = acceleration of gravity

c =  λ / T  = phase speed

t = time

x = direction of propagation

z = vertical co-ordinate

positive upward, origin

at still water level

d = water depth

pd = dynamic pressure

GS � � � J]� � � RSρ =  total pressure in

the water ( -ρgz  = hydrostatic pressure,

o
p  = atmospheric pressure).

E =  g a1
2

2ρ  = wave energy (per unit

surface area)
P Ec

g
=  = wave energy flux (per unit

width along the wave crest)
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7 PLANE WAVES

So far our waves have been waves in a channel with the spatial coordinates x and z and the time

coordinate t.  From now we are going to consider waves on a two dimensional ocean, waves that may

travel in any direction. By a plane wave is meant a wave with infinitely long crests (maxima) and

constant elevation along lines orthogonal to the travel direction (think of corrugated iron).

The general regular plane wave may be written

η ω α( , ) sin( )[ N[W D W= − +

where x is the position vector consisting of the coordinates (x,y) and k is called the wavenumber
vector with coordinates which we usually write ( , )N N[ \  . We use kx for the scalar product of k and x.

N [ N \[ \+ . The wavenumber vector has magnitude, k, equal to the wavenumber and direction equal to

the propagation direction of the wave. Let us verify this for a wave sin( )ωW − N[ .

Set k = k·a where a is a unit vector.  Consider a vertical pla

through the wave and through the origin, parallel to the unit ve

The horizontal position vector to all points along the cut in the

plane may be written [ D= U . For all these points  we have

sin( ) sin( ( ) ( )) sin( )ω ω ωW W N U W NU− = − ⋅ = −N[ D D

This is the familiar regular wave moving along the r-axis, that is in the direction of a.

If we now consider an arbitrary point x, we may write [ D E= +U  w

is orthogonal to a and hence to k. Then,

η ω ω
ω ω

( , ) sin( ) sin( ( ) ( ))

sin( ) sin( )

[ N[ D D E

DE

W W W N U

W NU N W NU

= − = − ⋅ +
= − − = −

This shows that the value of η( , )[ W  is the same for all values of b , that is, along lines orthogonal to

,or as stated above, along lines orthogonal to the propagation direction.

With N = ( , )N N[ \ , we may also introduce polar coordinates ( , )N θ  and write
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N N

N N
[

\

=
=

cos( )

sin( )

θ
θ

The propagation direction of the wave is thus given by θ.  In general we then have

η ω θ θ α( , ) sin ( cos sin )[ W D W N [ \= − − +1 6
Check what you get for θ = 0°, 90°, 180°, 270°!

For a general ocean surface extending both in the x- and y-directions, our equations and boundary

conditions for the surface waves must also include the y-coordinate. It is easy to see that the new

linearized equations are

∂
∂

+ ∂
∂

+ ∂
∂

= − ≤ ≤

∂Φ
∂

− =

∂
∂

=

∂Φ
∂

= −

2

2

2

2

2

2 0

0

0

0

Φ Φ Φ
[ \ ]

K ]

]
[ \ K W

W
Z [ \ W

W
[ \ W J

,

( , , , )

( , , , )

( , , , )

η

η

η

Check that the plane wave travelling along the x-axis,

η ω ω( , , ) sin( ( ) ) sin( )[ \ W D W N D W N[= − = −L [

and the corresponding velocity potential

Φ( , , , )
cosh( ( ))

cosh( )
cos( )[ \ ] W

DJ N ] K
NK

W N[= + −
ω

ω

still satisfy the equations! (This is easy since neither η nor Φ contain y!) Since there is in

general nothing special with waves in the x-direction in the above equations, we therefore

conclude that the general regular plane wave solution to the equations is the one above with

kx replaced by k·x for an arbitrary wavenumber vector k.
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Exercise 7.2:  a) What are the propagation directions and wavenumbers for the following waves

cos( ), ,

cos( ), ,

sin( ),

cos( ),

sin( ),

N[ W N

N[ W N

W

[ \ W

W [ \

− > >
− > >
− <

− − >
+ − >

ω ω
ω ω

ω ω
ω ω

ω ω

0 0

0 0

0

2 0

2 3 0

N[

(Hint: Always try to write the functions as sin( )ω αW − +N[  where ω > 0 since we know that k

in this case gives us both the propagation direction and the wavelength.)

b) Examine the function f (x, y, t , ) = cos(x − t)+ cos(y + t)  as a function of three variables!

Exercise 7.2: Show that the u- and v-velocities for the case k = k(cosθ i + sinθ j)  may be

written

u(x ,y,z, t) = ωa cosθ cosh(k (h + z))
sinh(kh)

sin(ωt − kx )

v(x ,y,z, t) = ωasin θ cosh(k (h + z))
sinh(kh)

sin(ωt − kx)

Review questions A7:

1) Explain the meaning of the wavenumber vector.

2) Show that η is constant along lines orthogonal to k.

3) How are the equations for surface waves modified for three dimensional waves?

4) How do we determine the propagation directions of "wave-like" functions?

8 SUPERPOSITION OF PLANE WAVES

Superposition means to “put on top of each other” or “add together”, and in this section we

shall learn how to obtain more general solutions of the equations in Sec. 7 by adding together

plane waves. We recall the linearized equations
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∂
∂

+ ∂
∂

+ ∂
∂

= − ≤ ≤

∂Φ
∂

− =

∂
∂

=

∂Φ
∂

= −

2

2

2

2

2

2 0

0

0

0

Φ Φ Φ
[ \ ]

K ]

]
[ \ K W

W
Z [ \ W

W
[ \ W J

,

( , , , )

( , , , )

( , , , )

η

η

η

and assume that ( , )η1 1Φ  and ( , )η2 2Φ  both are solutions. Since all four equations are linear in

η and Φ,  we easily see that ( , )η η1 2 1 2+ +Φ Φ  will be a solution as well. Check this by

putting η η1 2+  and Φ Φ1 2+  into the equations and use the fact that we have assumed that

( , )η1 1Φ  and ( , )η2 2Φ  are solutions.

Since it is alright to add two solutions, we also see that it is also possible to add together an

arbitrary number:

η ω α

ω
ω α

( , ) sin( )

( , , , )
cosh( ( ))

cosh( )
cos( )

[ N [

N [

W D W

[ \ ] W
D J N ] K

N K
W

Q Q Q Q
Q

1

Q

Q

Q

Q
Q Q Q

Q

1

= − +

= + − +

=

=

∑

∑
1

1

Φ

Each term in the sum corresponds to a plane wave defined in terms of

1) Its amplitude: DQ
2) Its wavenumber vector: NQ  (Remember that N JN KNQ Q Q Q Q= =| |, tanh( )N ω 2  )

3) Its phase at x = 0, t = 0, α Q .

From the velocity potential, we may as before obtain the particle velocities, (u,v,w), the
dynamic pressure Sdyn  and the accelerations.

Exercise 8.1: Examine how the solution made up by two plane waves with the same

wavelength and amplitude, but with different directions looks:

η ω ω

ω

( , ) sin( ) sin( )

sin cos

[ N [ N [

N N
[

N N
[

W D W D W

D W

= − + −

= − +�
��

�
��

−�
��

�
��

1 2

1 2 1 22
2 2

Exercise 8.2: Determine the period of oscillations of the form indicated below in a basin with

vertical walls at both ends.
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(Hint: Recall Exercise 6.3. Which condition must u satisfy at x = 0 and x = L? Construct the

solution by means of the result from Exercise 6.3.)

Review question A8:

1) What is a superposition of waves and why is a superposition of solutions a solution (for

small amplitude waves)?

9 ENERGY AND GROUP VELOCITY

When we look at waves breaking on a shore, it is obvious that the waves bring with them a lot

of energy. The energy content in an infinite plane wave is obviously infinite, so we are more

interested in finding the energy per unit area of the surface.

The potential energy contained in a column of water

with cross section dA as shown on the graph is

G( J]G9 G$ J]G] G$ J
K

S

] K ] K

= = = −

=− =−
I Iρ ρ ρ ηη η 2 2

2

Since only the excess potential energy is of interest, we subtract the part corresponding to the

mean surface and obtain the potential energy per unit area:

G( G(

G$
JS S− =

=
( )η

ρ η
0 1

2
2 .
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Instead of using the instantaneous value of η , it is more common to use the average of η2  on

the right hand side. The average of η2  for a sinusoidal wave with amplitude a is D2 2/  (We

shall return to this in Part B). For a plane wave with amplitude a, the average potential

energy per unit area is therefore
G(

G$
JDS = ρ 2

4

where the brackets are used for indicating the average value.

The kinetic energy is derived similarly by observing that

G( X Y Z G9N

] K

= + +
=−
I 1

2
2 2 2ρ

η

2 7 .

If we (for simplicity) consider deep water and a plane wave η ω( , ) sin( )[ N[W D W= − , we obtain

X Y Z D H N]2 2 2 2 2+ + = ( )ω

and therefore

G(

G$
D H G] D H G] D

N
D JN N] N]

] K

= ≈ = =
−∞=−
IIρω ρω ρω ρ

η
2 2 2 2 2 2 2 2 2

01

2

1

2

1

2

1

2

1

4
.

The average kinetic and the potential energies are thus equal (Show that the error introduced

by replacing η by 0 is negligible).

The energy is carried along with the waves, but somewhat surprisingly, the energy is not

travelling with the phase velocity of the wave. As a matter of fact, in deep water, the transport

velocity of the energy is only half the phase velocity!

We shall not give a rigorous proof of this, but follow a more intuitive argument. Consider

first the superposition of two plane waves in the same direction, but with slightly different

frequencies and wavenumbers:

D W N [ D W N [

D W
N N

[ W
N N

[

sin( ) sin( )

sin cos .

ω ω

ω ω ω ω

1 1 2 2

1 2 1 2 1 2 1 22
2 2 2 2

− + −

= + − +�
��

�
��

− − −�
��

�
��

The result is a  product of two travelling waves. The first wave has frequency about the same

frequency and wavenumbers as the two original waves, whereas the second wave has
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frequency ( ) /ω ω1 2 2−  and wavenumber ( ) /N N1 2 2− . At a given instant of time, the result

will look as shown on the figure.

The result consists of “groups of waves” moving with the phase velocity of the “cosine”

wave:

F
N N N NJ = −

−
= −

−
( ) /

( ) /

ω ω ω ω1 2

1 2

2 1

2 1

2

2
.

If we are sitting in a boat in one of the minima for the amplitude (called “knots”), and moving
with a velocity equal to FJ , we would not feel any waves at all! And energy will pass us in

either direction.  From this we conclude that the energy is moving with the same speed as we

are, namely the group velocity, which in the limit amounts to

F
G
GNJ = ω

Since we are dealing with water waves fulfilling the dispersion relation, we have

F
G
GN

G
GN

J NK JN K NK GN
GN

J
NK

NK
NKJ = = = ⋅ + ⋅ ⋅ = +�

��
�
��

−ω ω ω
ω ω ω

2

2 2 2

2

2

( tanh( ) cosh ( ))
tanh( )

cosh ( )

In deep water (K→ ∞) we obtain from the expression above, or simply from the

corresponding dispersion relation that

F
G
GN

J J F
J

S= = = =ω
ω

ω
2 2 2

/
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In deep water, the group velocity is only half the phase velocity. If we watch wave groups, the

individual waves are created at the end of the group, and move forwards until they disappear

at the front of the group.

In very shallow water, ω = JK N , and

F
G
GN

JK FJ S= = =ω
.

In very shallow water, the phase and the group velocities are equal!

For wave power generation, it is the energy coming into the device per time unit rather than

the energy content itself which is of interest.  In order to derive the available energy, it is

convenient to consider an ideal (100%) wave energy absorber placed in front of an incoming

plane wave as shown on the figure below. We are interested in the absorbed energy per time

unit and length unit of the absorber.
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During a time interval T, all energy within the dashed area is absorbed by the wave absorber.

The energy within the square is

Kinetic energy +  potential energy =
1

4
2 2ρJD F 7 /J⋅ ⋅( )

The absorbed energy per time unit and per length unit of the absorber is thus

-
JD F 7 /

7/
JD F

J

J=
⋅ ⋅

=

1
2 1

2

ρ
ρ

2

2
( )

.

In metric units, the unit for J is Watt per meters (W/m).

Consider a typical ocean wave with amplitude a=10m and period T=10s. In deep water,

F
J

J
7

P VJ = = =
2 4

8 3
ω π

. /

Thus,

-
NJ
P

P
V
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P
V

NJP
V VP
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��

�
��
�
��

�
��

�
��

�
�� ≈ ⋅ =1

2
10 9 81 1 8 3 4 10 403

3 2
2 4

2

2. . /2 7

This is considerable! Unfortunately, existing wave power devices are far from being

"perfect".

Exercise 9.1: A plane wave is moving along the x-axis in a sea where the depth slowly

varying with x, h=h(x). If there is no reflected or dissipated energy (e.g. removed by friction),
show that the amplitude, a, and the group velocity, FJ  must satisfy

D [ F [J
2 ( ) ( ) = constant .

A wave coming from the deep sea with amplitude 1m and wavelength λ= 300 m is moving as

above into shallow water, 5 m deep. Determine the new wave amplitude and its wavelength.

The wave steepness is defined by 2D / λ . Determine these ratios for the wave above. (Answ:

New amplitude 1.24 m, steepness, deep water = 0.0067, shallow water 0.026).

Exercise 9.2: Compute the maximum electric power that can be generated by a device that

converts 10% of the energy from a plane wave of amplitude 0.5m and wavelength 100m if the

device is 1 km, parallel to the wave crests. (Answ: 7.6·105W).
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Review questions A9:

1. What are the potential and kinetic energies per unit area for a regular wave?

2. How is the group velocity defined, and how does it relate to the phase velocity in deep

and shallow water?

3. Derive the expression for the energy absorbed per unit time and unit length of an

4. absorber sitting orthogonal to the propagation direction of the wave.
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